
Linking Safety Culture & Safety Performance

In Marine Transportation

Martha Grabowski

Le Moyne College
Rensselaer Polytechnic Institute
 grabowsk@lemoyne.edu
http://web.lemoyne.edu/~grabowsk
Twitter: grabowsk2

National Transportation Safety Board Safety Culture Forum Washington, DC 10 September 2013

Overview (2003-2011)

Examine the linkage between safety culture and safety performance in the maritime

industry

Partnership between

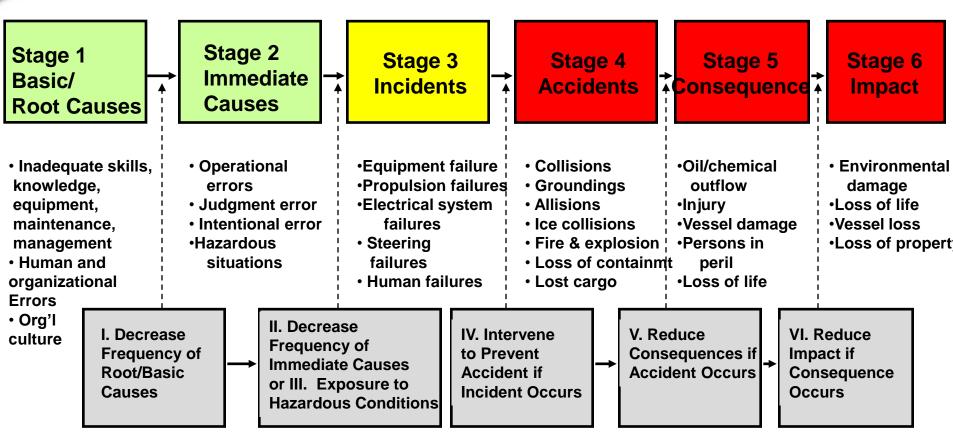
- American Bureau of Shipping,
- U.S. Coast Guard,
- 3 shipping companies
 - 1 U.S. domestic tanker operator
 - 1 International tanker operator
 - 1 International container operator

http://www.shipspotting.com/modules/myalbum/photo.php?lid=72482.
Retrieved 9 Dec 2007

Overview (2003-2011)

Investigate safety factors in the marine industry significantly linked to:

- Human errors
- Near misses
- Accidents
- Incidents and
- Increased risk levels


http://www.shipspotting.com/modules/myalbum/photo.php?lid=72482.
Retrieved 9 Dec 2007

Method

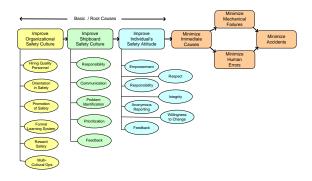
- **Develop model** (leveraging previous aviation, risk, safety culture research)
- Collect and analyze data (correlation analyses)
- Secondary data analyses (binomial regression, structural equation modeling)
- Identify company-specific, trade-specific, and /or generic sets of indicators
- Evaluate links between safety culture and safety performance

Foundation--Risk Event Error Chain

Risk Reduction Interventions

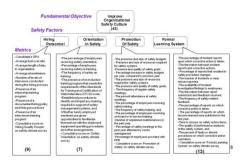
Safety Management Programs Channel Closure Restrictions

Escort Vessels, Redundancy


Double Hulls

Booming and Containment

Safety Culture, Performance

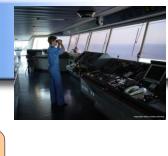

Safety factors

- Characteristics, artifacts of culture
- Interviews, data gathering

Safety factor metrics

Measuring characteristics of culture

Safety performance data


- Accidents, incidents, near misses, conditions of class, port state deficiencies, LTI >= 3 days
- Survey data perceived safety
- Validation data
 - US Coast Guard Marine Safety Mgmt System (MSMS), MISLE, MSIS, MinMod, CASMAIN, etc.
 - National Transportation Safety Board (NTSB) reports
 - UK MAIB database, Paris, Hong Kong MAIB
 - Lloyd's List, Equasis, NOAA oil spill databases
 - Coastal state, local, pilot, environmental, native data
 - Open source, proprietary, company-sensitive data

Integration

Safety Factor Model

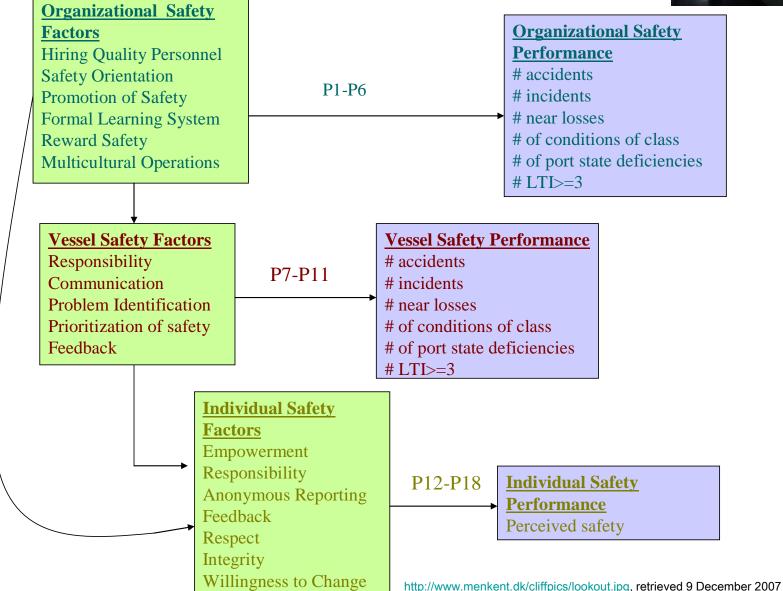
Multi-**Cultural Ops**

Minimize

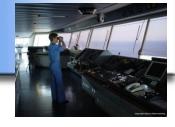
Accidents

Vessel Leadership Senior Executive Safety, Health & Environmental interviews Minimize Vetting interviews interviews Basic / Root Causes Mechanical **Failures Improve Improve Improve** Minimize Organizational Shipboard Individual's **Immediate** Safety Culture Safety Culture Safety Attitude Causes Minimize Human Hiring Quality Responsibility **Errors Empowerment** Personnel Respect Orientation Communication Responsibility in Safety Integrity Problem Promotion Identification Anonymous of Safety Reporting Willingness to Change Prioritization Formal Feedback earning System Feedback Reward Safety

- 20 interviews over 3-year period
- · Gather safety factor metrics and data
- Validate existing safety culture surveys nuclear, chemical, aviation, offshore, medical
- Pilot test shipboard, shoreside safety culture surveys


Culture

- A set of shared, basic, tacit assumptions about how the world is and ought to be (Schein, 1992, 1996)
- Determines perceptions, thoughts, behavior
- Safety culture: characteristics and attitudes in organizations and individuals that establish safety as an overriding priority (International Atomic Energy Administration, 1986)
 - Individual safety knowledge
 - Team, vessel safety culture, behavior
 - Organizational safety culture, behavior



Initial Research Framework

Safety Factor Metrics

Fundamental Objective

Improve Organizational Safety Culture (43)

Senior Executive Interviews

Safety Factors

Hiring Personnel

Orientation In Safety

Promotion Of Safety

Formal Learning System

Metrics

- Candidate's GPA
- Average turnover rate
- Average length of stay in organization
- Average absenteeism
- •Number of levels of interviews conducted during the hiring process
- Presence of an internship training program
- Presence of a documented hiring policy and hiring procedures
- Presence of an interviewer training program
- •Cumulative score on 'Hiring Quality People' on safety climate survey

- •The percentage of employees receiving safety orientation,
- •Percentage of employees receiving safety re-training,
- •The frequency of safety retraining.
- •The presence of an induction training program that meets the requirements of the Standards for Training and Certification of Watchstanders (STCW) code,
- •Established procedures to identify and impart any training required in support of safety management systems, and •Whether newly employed seafarers are given
- seafarers are given opportunities to familiarize themselves with the shipboard equipment operating procedures and other arrangements.
- Cumulative score on 'Safety Orientation' on safety climate survey

(7)

- •The presence and size of safety budgets,
- Presence and size of resources required for safety systems,
- Presence and quality of safety goals
- Percentage increase in safety budgets per year, compared to previous year
- •The presence and size of resources required for safety systems,
- •The presence and quality of safety goals,
- The frequency of regular safety meetings,
- •The percent attendance at safety meetings,
- •The percentage of employees receiving safety training,
- •The frequency of safety training, and
- •The percentage of employees receiving on-board or in-service training.
- •Number of unplanned maintenances in the past year
- Percentage of safety meetings in the past year attended by senior management
- •Percentage of employees provided with PPE
- Cumulative score on 'Promotion of Safety' on safety climate survey

- •The percentage of incident reports upon which corrective action is taken,
- •The time taken between incident reports and corrective actions,
- Percentage of reports that resulted in safety procedure changes,
- •The number of incidents or near misses reported,
- •The availability of incident investigation findings to employees,
- •The time taken between report submission and feedback received.
- •The frequency of safety-related feedback.
- •The percentage of reports on which corrective action is taken,
- The percentage of reports on which lessons learned were published in the last year.
- •Time to closure on safety action items,
- •The quality of performance analyses of the safety system, and
- •The percent of faulty or absent procedures on which corrective action was taken.
- Cumulative score on 'Formal Learning System' on safety climate survey

(9)

(14)

(13)

Participants (2003 – 2011)

	Domestic Tanker	International Tanker	Container	Total
Shipboard	77	846	684	1607
Shoreside	22	97	38	157
Total Individual	99	943	722	1764
Vessels	7	39	56	102

- Domestic US tanker operator (Initial and Follow up Study)
- International tanker operator (Initial study)
- International container operator (Initial study completed)

Safety Performance

Organization	Accidents	Incidents	Near Losses	Port State Deficiencies		LTI >=3
Industry Partner 1	1*	N/A	60	6*	1*	7*
Industry Partner 2	31*	N/A	40	15*	16*	25*
Industry Partner 3	47	73	174	23*	39*	10*
Total	79	73	274	44	56	42

Company proprietary data

- * = small sample size; t = 1 year; Table 5
- US Coast Guard Marine Safety Mgmt System (MSMS), MISLE, MSIS, MinMOD, CASMAIN, etc.
- Coastal states, pilot organization, environmental groups' data
- National Transportation Safety Board reports
- UK MAIB, Hong Kong Marine Dept, Paris, Equasis databases
- Lloyd's List, NOAA spill databases

Open source, proprietary, company-sensitive data

Organizational Safety Results

- Safety Factor Categories
 - Hiring Quality Personnel
 - Safety Orientation
 - Promotion of Safety
 - Formal Learning System
 - Reward Safety
 - Multicultural Operations

Safety Performance Measures

- Number of accidents
- Number of incidents
- Number of near losses
- Number of Conditions of Class
- Number of Port State Deficiencies
- Number of LTI≥ 3 days

Highlighted Organizational Safety Factors were significant for highlighted Performance Measures

Vessel Safety Results

Safety Factor Categories

- Communication
- Responsibility
- Problem Identification
- Feedback
- Prioritization of Safety

Performance Measures

- Number of accidents
- Number of incidents
- Number of near losses
- Number of Conditions of Class
- Number of Port State Deficiencies
- Number of LTI≥ 3 days
- Perceived Safety based on Survey results

Highlighted Vessel Safety Factors were significant for highlighted Performance Measures

Individual Safety Results

Safety Factor Categories

- Empowerment
- Responsibility
- Anonymous Reporting
- Feedback
- Respect
- Integrity
- Willingness to Change

Performance Measures

- Number of accidents
- Number of incidents
- Number of near losses
- Number of Conditions of Class
- Number of Port State Deficiencies
- Number of LTI≥ 3 days
- Perceived Safety based on Survey results

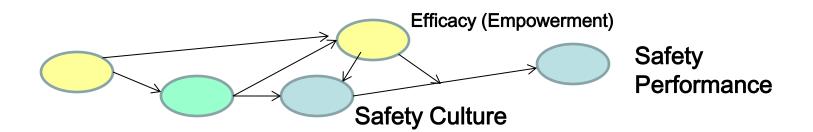
Highlighted Individual Safety Factors were significant for highlighted Performance Measures

Individual Safety Factor Metrics (example)

Leading Indicator Categories	Standard Metrics for Assessing the Leading Indicators		
Individual	Perceived safety = dependent variable		
Empowerment	M 6: Employees' average length of stay in the organization.		
	M 7: Employees' average absenteeism in the past year.		
	M 8: Employees' satisfaction with the influence he/she has on health and safety performance in the organization.		
	M 9: Employees' perception of the control he/she has over safety outcomes of the job.		
	M 10: Employees' satisfaction with his/her involvement in the safety of the vessel.		
	M 11: Employees' perception of his/her involvement when health and safety procedures are being developed.		
	M 12: Employees' perceptions of his/her influence on the safety decisions being made by superiors.		

Bold metrics are objective (quantitative) metrics. Regular font are subjective metrics.

Initial Study Limitations



- Correlations, not causality
 - Higher order statistical analyses followed (SEM, binomial regression)
- Longitudinal assessments needed
 - Within, and cross-organizational analyses
 - Benchmark results vs. other safety factor studies
- Small # of organizations (n = 3 companies)
 - Trend analyses require further data collection
- Safety factors and metrics provide starting point for measurement over time

Secondary Analysis (2011-2013)

- Network of safety culture influences
- (DeJoy, et al., 2004; Neal, et al, 2000; Zohar, 1980; 2003).

- Assumption: When safety culture (climate) high, workers perceive safety as critical
 - Workers & supervisors actively make causal inferences about safety (DeJoy, 1994; Hofmann & Stetzer, 1998)
 - Workers are motivated to be proactive in identifying & correcting anomalies (O'Dea & Flin, 2001; Parker, et al., 2003; Simard & Marchand, 1995)

Efficacy's Moderating Effect on Team (Vessel) Performance

Safety Culture

H1, H2***, H3A1t***

Safety Performance

- # accidents
- # unplanned maintenance
- # safety suggestions

N = 23 vessels

(vs. 102; 239 vessels; missing data)

H4A, H4B***, H4CAlt****

- Vessel level
- Negative binomial regression
- Accidents: Zero-inflated negative binomial regression

Worker Efficacy

Efficacy: Perceived ability to exert control over outcomes

(Bandura, 1977; 1997)

--measured at individual level, aggregated

Efficacy (Behavioral proactivity) motivates safety improvements

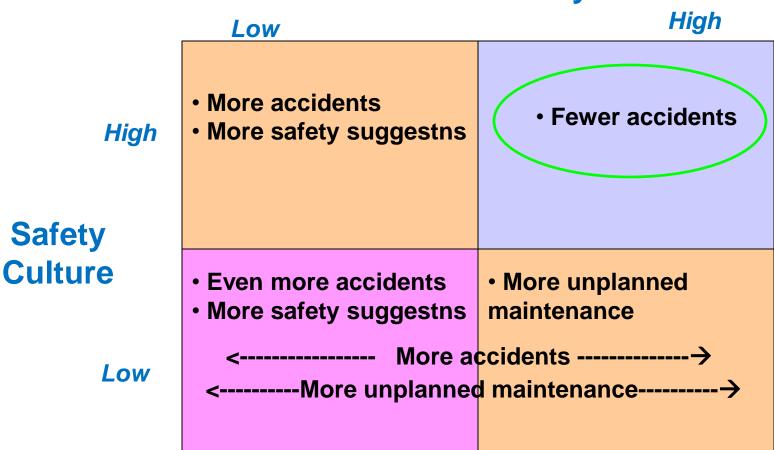
- --fewer accidents
- --fewer unplanned maintenance activities
- --more (or fewer?) safety suggestions

Assumptions about Safety Culture

Vessel Efficacy

Low High ←-----Lower Uncertainty ------←-----Proactive problem solving-→ <------ High \$tress -------←------High Uncertainty ------←-----Reactive problem solving-→

Safety Culture


Low

High

Safety Culture and Vessel Performance ...moderated by Vessel Efficacy

Vessel Efficacy

- Negative binomial regression
- Accidents: Zero-inflated negative binomial regression

N = 23 vessels

(vs. 102; missing data)

Implications

- Networks of safety culture influences
- Moderating influence of efficacy/empowerment
- Safety culture manifests at different org'l levels
 - Safety culture metrics, rewards, incentives vary across organizational levels
- Safety factors linked to safety performance
 - Organizational Hiring Quality People, Promote Safety, Formal Learning System
 - Vessel Communication, Responsibility, Problem ID, Feedback
 - Individual Empowerment, Anonymous Reporting, Feedback
- Safety performance impacts vary by level
 - Near loss metric significant across all levels
 - Near loss measurement systems provide safety performance lens across levels

Implications

- Efficacy/empowerment can be maladaptive
 - Especially with high safety culture
 - Not particularly helpful –maladaptive--in uncertain, high stress and reactive problem solving settings
- Multi-level, network data analyses

- Secondary data analysis provides new insights
- Initial correlation analysis → Zero-inflated binomial regression
- Process: Partnerships were key
- Next steps: Networks of linked networks
 - Missing nodes, influential nodes

References

- Choo, A. & Grabowski, M.R. 2013 "Linking Safety Climate to Safety Improvement Efforts and Operational Disruptions: The Moderating Role of Efficacious Workers" submitted to *Production & Operations Management*. May 17.
- Dhami, H. & Grabowski, M.R. 2011. "Technology Impacts on Safety and Decision-Making over Time in Marine Transportation," Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. September, 225: 1-24. Special issue on Risk and Reliability in Marine Transportation.
- Grabowski, M.R., You, Z., Song, H., Wang, H. & Merrick, J.R. 2010, "Sailing on Friday: Developing the Link between Organizational Safety Culture and Performance in Safety-Critical Systems." *IEEE Transactions on Systems, Man & Cybernetics, Part A, Systems and Humans*, 40:2, March, 263-283. doi: 10.1109/TSMCA.2009.2035300.
- Grabowski, M.R., You, Z., Zhou, Z., Song, H., Steward, M. & Steward, B. 2009. "Human and Organizational Error Data Challenges in Complex, Large-Scale Systems." *Safety Science*, 47:9, October, 1185-1194, doi:10.1016/j.ssci.2009.01.008.
- Grabowski, M.R., Ayyalasomayajula, P., Merrick, J.R., Harrald, J.H. & Roberts, K.H. 2007. "Leading Indicators of Safety in Virtual Organizations." *Safety Science*. 45:10, December, 1013-1043. DOI doi:10.1016/j.ssci.2006.09.007.
- Grabowski, M.R., Ayyalasomayajula, P. Merrick, J., & McCafferty, D. 2007. "Accident Precursors and Safety Nets: Leading Indicators of Tanker Operations Safety." *Maritime Policy and Management*, 34:5, October, 405-425.
- National Research Council. 2009. Risk of Vessel Accidents and Spills in the Aleutian Islands: Designing a Comprehensive Risk Assessment. Special Report 293. Washington, DC: National Academies Press. http://www.nap.edu/openbook.php?record id=12443&page=73, retrieved 21 October 2011.

